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Abstract. LODeX is a Semantic Web tool that, leveraging a summarized rep-
resentation of a LOD source structure (i.e. Schema Summary), helps users ex-
plore and query SPARQL endpoints by hiding the complexity of Semantic Web
technologies. By leveraging Schema Summary of a LOD source, LODeX guides
the user in composing visual queries that are automatically translated in correct
SPARQL queries through a SPARQL compiler. In this work we inspected how
LODeX can deal with the high expressivity of SPARQL. In particular, we pro-
pose a formal model that allow to define queries over the Schema Summary (i.e.
Basic Query) and we analyze how this model can handle different join patterns
used in SPARQL queries. Finally, we inspect how LODeX can satisfy real world
users necessities by analyzing the query logs contained in the LSQ dataset. We
show that LODeX could be able to generate the 77.6% of the 5 million queries
contained in LSQ dataset.

1 Introduction

In the last few years, the Linked Data Cloud is growing at dizzying pace, its number of
datasets has risen from 294 in the 2009 to 1024 in the 2014 [23], without taking in con-
sideration the huge amount of Semantic data recently embedded in web pages thanks to
the RDFa standard [2]. In this context, one of the greatest issue is the complexity of the
Semantic Web technologies, indeed, a user for effectively dealing with this kind of data
have to master several complex standards: RDF [10], a metadata data model used for
defining semantic data according to a graph data model; RDFS [8] and OWL [16], lan-
guages for defining ontological constraints and enabling inference upon semantic data;
SPARQL [24], a query language used for extracting information from RDF data. More-
over, each data sets is usually described by its own vocabulary, increasing on one hand
the flexibility in data representation but raising on the other hand the complexity in data
consumption, especially for unskilled users. Writing SPARQL queries is a error-prone
and tedious task but today is the only way for extracting information from RDF data.
For supporting the user in the consumption of Linked Data we defined a model,
called Schema Summary [5] [7], and a tool, called LODeX [4] [6], both of them fi-
nalized in supporting the user in exploring an unknown datasets. Each LOD source is
composed by two kind of knowledge: the intensional knowledge defines the terminol-
ogy used in the dataset and it is described in RDFS or OWL,; the extensional knowledge
usually covers most of the datasets and it contains the entities of the real world described
in the dataset. The Schema Summary of a LOD source is extracted by analyzing the dis-
tribution of the instances within the extensional knowledge and LODeX allows user to



2 F. Benedetti, S. Bergamaschi

build visual queries over this summary. In the paper we want to inspect how much the
expressivity of SPARQL is covered by the SPARQL queries that can be generated by
LODeX. In particular, we propose the definition of the Basic query model used within
LODeX and the algorithm of the SPARQL compiler, that allow to generate SPARQL
queries starting from the Schema Summary of a LOD source and an instance of Basic
Query. Then, we inspect how the Basic Query model can handle different join pattern
that can be found in SPARQL. Finally, we evaluate how LODeX can satisfy the real
world users requests by using the LQS Dataset [21]. This dataset contains more than
5 million of queries, extracted from logs of 3 different SPARQL endpoints, executed
from real users. The analysis that we propose is finalized to verify how many of these
query could be generated by LODeX.

The remainder of the paper is structured as follows. We discuss related work in
Section 2. We summarize the architecture of LODeX in Section 3. Section 4 illustrates
the component of LODeX that manage the formulation and translation of queries, while
Section 5 reports the capabilities and limitations of the Basic Query model. Section
6 contains the analysis of the queries contained in LSQ respect to the capabilities of
LODeX, and finally, Section 7 sketches the conclusions.

2 Related Works

In the literature, we can find several tools that aim to support users in LOD visualization,
browsing and in the definition of complex queries. These tools can be divided in two
major groups: tools with the main goal of providing a synthetic overview of the whole
structure of an RDF dataset and tools that allow the browsing of a dataset just at instance
level.

In the first group, we can find only few examples; the most important two are LOD
Visualization and ProLOD; these tools aim to provide to users an high level analysis
of a LOD dataset. In particular, LOD Visualization is a prototype based on the Linked
Data Visualization Model [9], and it allows to build analysis, transformations and vi-
sualizations of Linked Data. Whereas, ProLOD [1] automatically provides a group of
statistical analysis regarding the content of a dataset, but it does not foresee any query-
ing possibility.

In the second group we can find tools that provide visual querying functionalities,
but their focus is limited to the instance level. A first example is LD Query Wizard [15],
a tool that allows to select instances through keyword search and it uses a powerful
tabular view that allows users to browse an RDF graph. LODlive and LODmilla [17]
provide a visually appealing way to explore information associated with an instance
using a graph visualization, but they do not provide any query building functionality.
Also gFacet [13, 14] uses the same strategy of exploration (with a graph visualization),
but in this case, each node is a class that contains a list of instances and the user can
link new nodes (classes) as if he was building a visual query, but it does not produce
as output any SPARQL query. SPARKLIS [12] implements a fascinating approach in
which a SPARQL query is composed as if the user was composing a natural language
request. ISPARQL [18] is one of the most famous tool for building visual SPARQL
query and it allows to incrementally build a SPARQL query by extending it step by
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step; this kind of approach is not very intuitive and a user have to own a good knowledge
of SPARQL for being able to use ISPARQL. Moreover, the tool does not provide any
guidance to users, indeed, they have to understand the schema of the LOD source before
being able to define a SPARQL query.

As reported in [11], the majority of the tools for data visualization requires the user
to manually explore the dataset and they are not able to provide a synthetic schema
representing the structure of the source. LODeX differs from the tools described above
since it provides a synthetic representation of LOD source schema and the user can use
it to build visual queries. Moreover, LODeX hides to the final user the complexity of the
Semantic Web technologies allowing users to build SPARQL query without knowing
its syntax. The only tool that provide this characteristic is SPARKLIS which, however,
does not provide user a whole picture of the structure of the dataset.

3 Architecture Overview
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Fig. 1: LODeX architecture

LODeX consists of four distinct components (as illustrated in Figure 1), each re-
sponsible for a specific activity:
— Indexes Extraction: it takes as input the URL of a SPARQL endpoint and gener-

ates a set of queries able to extract a set of indexes from the extensional knowledge
(extensional group of Statistical Indexes in [3]).
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— Schema Summary Generation: it generates the Schema Summary thanks to the
indexes extracted in the previous step (see [7] for additional information).

— Schema Summary Visualization: the visualization is performed by a web appli-
cation through which the user can interact for browsing the Schema Summary and
build the visual query.

— Query Orchestration: it manages the interaction between the GUI and the user in
composing the visual query, in the generation of the SPARQL queries and in the
submission of it to the remote endpoint.

4 Query Orchestration

The Query Orchestrator is the component that manages the formulation of the visual
queries and the translation of these queries in SPARQL ones. These functionalities are
available thanks to a model, called Basic Query, used for describing the visual query
that the user is building. A SPARQL compiler takes in input an instance of a Basic
Query and the related Schema Summary for producing as output the corresponding
SPARQL query.

4.1 Basic Query

The user is guided by LODex in the composition of a Basic Query upon a Schema
Summary. A Schema Summary is a pseudo-graph where the nodes are classes con-
nected through properties; each classes is associated to a set of attributes, each attribute
of a class represent the existence of a particular datatype property having as subject an
instance of this class. A formal definition of the Schema Summary and a description of
the interface of LODeX can be found in [7]. The classes, properties and attributes se-
lected by the user in Schema Summary participate to the composition of a Basic Query
Q. A Basic Query has a tree structure that overlaps the Schema Summary graph, the
nodes of the tree are classes € C', while the leafs can be both classes € C or attributes
€ A. Here is its formal definition:

Definition 1 (Basic query) A basic query Q, defined on a schema summary S, is a
tuple Q= (T mc,mpg,ma,0,F), where

— T is a directed and labeled tree composed by two kinds of vertices, T = (C’,A’,E’),
where:
o (C’ is a set of vertices where each vertex refers to a class in the Schema Sum-
mary
e A’ is a set of vertices where each vertex refers to an attribute in the Schema
Summary. This kind of node can appear only as leaf of the tree T
o E’ is a set of edges where each edge consist of an ordered pair of vertices
e=<nln2> ecE,nleC,n2eC UA’
o r € C’is the root node,
- m¢g: C' = C is a mapping function that links each vertex in C’ with a vertex in
C(s);
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- ma: A" — A is a mapping function that links each vertex in A’ with an edge in
A(S);

- mpg: E' — P is a mapping function that links each edge in E’ with an edge in
P(S);

- 0: E' — {true, false} is called optionality function.

— F contains the filtering conditions associated with the attributes of the query and
it is composed by a set of tuple (a,k,v), where a is the attribute € A’, k contains
the filtering operator (a regular expression, or an arithmetic operator) and v is the
value through which to assess the filter expression.

Graphically, a user starts composing a basic query by selecting the first class in
the Schema Summary, then, if the user selects a property for this first class, also the
connected class is shown in the query panel and the edge and vertex are added to the
tree. The user may also select the attributes of each class: in this case, the tree is further
enriched with edges and leafs.

4.2 SPARQL compiler

The Query Orchestrator translates the Basic Query into a SPARQL query through a
compiler. The compiler exploits an iterative algorithm that traverses the Basic Query
tree for producing the SPARQL query. The Query Orchestrator allows the usage of
these SPARQL operators: AND (.), OPTIONAL (also nested), FILTER, ORDER BY,
OFFSET and LIMIT. The pseudo-code of the SPARQL compiler is presented in Algo-
rithm 1. For simplicity, I show only the compilation of the body of the query, then, this
body will be equipped with the SELECT statement, the pagination condition (LIMIT
and OFFSET) and the ORDER condition, if specified. Algorithm 1 takes as input the
Schema Summary S and the basic query ). The output (SQ) of Algorithm 1 contains a
SPARQL query. I use some of the algebraic operators defined in [19] to describe the for-
mulation of the query: the triple pattern (s,p,0), in which the elements can also be param-
eters (in this case we use the function Par(node) for assigning a unique parameter); the
operator AND that represents the dot (.) in SPARQL; the operator OPT (OPTIONAL);
the operator FILTER (i.e. ?parameter condition value). The compiler is based on a recur-
sive algorithm which is initialized from line 2 to 4, where the the BGPs (i.e. basic graph
pattern [20]) related to the root node of the Basic Query are translated. The function
me, m4 and mp retrieve the URIs related to classes, attribute and properties from
the Schema Summary S. The function attributes(class, currentquery) append to
currentquery the statements related to the attributes of the current class. The function
filtCon(a) returns the filter statements associated to the current attribute. When the al-
gorithm is initialized, the recursive function recursivebody(class, currentquery) is
called (line 4); this function traverse the query tree and it inserts the statements regard-
ing the various nodes. The edges composing the query can refers to properties that exist
in the Schema Summary with a revers direction, this case is handled in lines 10 and 11.
When the algorithm has traversed all the query tree the SPARQL query is returned.
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Data: S, Q, F

Result: SQ

Algorithm compiler()

SQ=(Par(Q.r),rdf:type,mc(Q.r));
SQ=attributes(Q.5SQ);

SQ=recursivebody(Q.550);

return SQ;

Function recursivebody (¢,RQ)

forall the child ch of ¢ do
CHQ=(Par(ch),rdf:type,mc(ch));

if mg(<c,ch>) is directed from c to ch in S then CHQ=CHQ AND
(Par(c),mg(<c,ch>),Par(ch));

else CHQ=CHQ AND (Par(ch)),mg(<c,ch>),Par(c);
CHQ=attributes(ch,CHQ);

if ch is not a leaf node then recursivebody(ch,CHQ);
if o(ch) then RQ=RQ OPT ( CHQ );

else RQ=RQ AND CHQ;

end

return RQ ;

Function attributes(¢,SQ)

forall the attribute a connected with ¢ do
AQ=(Par(c),ma(<c,a>),Par(a));
if exist F(a) then AQ=AQ AND filtCon (a);
if o(a) then SQ=SQ OPT ( AQ );
else SQ=SQ AND AQ;

end

return SQ ;

Function filtCon(a)

FC=0;

forall the fc in Q.F related to a do
concatenate in FC, using the AND operator, each fc condition as: FILTER
(Par(a), fc.k fc.v);

end

return FC ;

Algorithm 1: SPARQL compiler algorithm
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S Capabilities and limitations of the Basic Query model

The authors in [22] defined 4 different kinds of join types that can be found in a
SPARQL query. These join patterns differ in the way the join node is connected within
the BGPs forming the SPARQL query. A join node has an outgoing link if it appears
as subject of a triple pattern and it has an incoming link if it appears as object. In a
Star pattern the join node has multiple incoming links but no outgoing links. A Sim-
ple pattern contains a join node that has precisely one incoming and one outgoing link.
A Hybrid pattern is composed by three ore more links and the join node has at least
one incoming and one outgoing link. Finally, a Sink pattern contains a join node with
multiple incoming links and no outgoing ones. In Figure 2 on the left you can see a
schematic representation of these four patterns, while on the right their representation
through the Basic Query model is proposed. As you can see they can all be represented
through the Basic Query model and, even if the Sink pattern expects the existence of
only incoming links, the SPARQL compiler can translate edges between nodes of the
query in the opposite direction, according to the information contained in the Schema
Summary. The Basic Query is able to model all the acyclic combinations of these pat-
tern. A tree model is not enough expressive to represent cyclic queries, but this kind of
queries are not so common in real use cases (as it will be shown in Section 6).

From the point of view of the SPARQL operators supported, LODeX is able to
generate SPARQL queries with a SELECT form. The OPTIONAL pattern is allowed,
indeed, the user can include optional attributes and classes in the Basic Query and the
SPARQL compiler is able to correctly translate the query; if a class is included in the
query as optional, all its child have to be included in the OPTION clause. LODeX
supports the FILTER operator that can be applied to attributes (the greatest part FILTER
clauses are applied on literal values). In particular, LODeX allow the definition of filter
statement on number (greater, minor or equal) and string (equal, contains and regular
expression). LODeX allows also the usage of the operator ORDER BY and it can be
used with both classes and attributes. Moreover, the operators LIMIT and OFFSET are
available, indeed, LODeX automatically paginates the results in order to speed up the
retrieval of results.

LODeX does not implement all the SPARQL 1.1 operators; in particular, UNION,
GROUP BY, MINUS, EXCEPT are not available. This choice is primarily due to the
willing of providing an intuitive visual query interface, and the usage of such operators
would have increased the complexity in the query definition. In fact, LODeX aims to be
a tool used for exploring the content of an unknown LOD source and for easily building
simple queries. Moreover, LODeX allows the user to manually modify the generated
SPARQL query and a skilled user, who master these complex operators, can quickly
build the skeleton of his query with LODeX and then modify it at will.

6 Evaluation using real world query logs

The LSQ datasets contains SPARQL queries extracted from endpoint logs ! executed
on three public datasets: DBpedia (logs from 30/04/201020/07/2010; a dataset with

! The LSQ dataset is available from http://aksw.github.io/LSQ/.
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232 million triples), Linked Geo Data (LGD) (24/11/2010 06/07/2011; with 1 billion
triples), Semantic Web Dog Food (SWDF) (16/05/201412/11/2014; with 300 thousand
triples) and the British Museum (BM) (08/11/201401/12/2014; with 1.4 million triples).
These queries represent a good sample for evaluating the real usage of SPARQL and
we analyzed them for discovering how much the limitations of the Basic Query model
would affect a real scenario.

Table 1: Number of queries contained in the LSQ dataset and number of queries involv-
ing the intensional or extensional knowledge.

Dataset Total Distinct Correct |Intensional Extensional %
Queries Queries Queries [ Knowledge Knowledge Extensional
DBpedia 3.5.1 1728041 1208789 782364 43812 738552 94.4
Linked Geo Data 1656254 311126 297580 4761 292819 98.4
SWDF 1411483 99165 85520 4533 80987 94.7
British Museum 879426 129989 29073 0 29073 100
Total 5675204 1749069 1194537 53106 1141431 95.55

The number of queries contained in the dataset is more than 5 million, but, by re-
moving the duplicate queries and the malformed ones the number goes down to 1.2
million (as you can see in the left part of Table 1). The Schema Summary produced
by LODeX covers only the extensional knowledge of a LOD source [S]. Thus, we first
inspected which portion of the queries contain some BGPs targeting the intensional
knowledge. The results are shown in the right part of Table 1; as you can see just the
4.45% of the queries contains some clauses involving the intensional knowledge. This
is not a surprising result because only users with a deep knowledge about Semantic Web
usually target this kind of data.

Table 2: Percentage of queries containing join nodes and cyclic queries
Dataset Star Path Hybrid Sink No Join|Cyclic
DBpedia3.5.1 3857 8.6 6.79 631 61.23 | 426
Linked Geo Data 28.18 9.46 7.57 124 72 2.58

SWDF 10.7 11.24 4.01 0092 84.25 | 4.11
British Museum 0 0 0 0 100 0
Overall 33.05 879 6.62 451 66.5 | 3.72

Secondly, we analyzed the queries looking for what kinds of join structure they
contain. In Table 2 you can see a summary of the results. The greatest part of the queries
have a very basic structure, with no join, or with a single join node. Only the 3.72% of
the queries contains a combination of join nodes that forms cycle and they are not
compatible with the Basic Query model.

We also analyzed the operators used. In Table 3 the utilization percentage of the
principal operators not supported by LODeX is summarized. As you can see in the
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top Table, advanced features like federation, sub-query and negation are rarely used.
Aggregation features (GROUP BY) are a bit more used but they are lower long the 1%.
The bottom Table contains others operators: UNION, CONSTRUCT, DESCRIBE and
ASK. In this case the impact is a bit higher but two of the operators (DESCRIBE and
ASK) are used primarily for exploring a dataset when a user do not know its structure.
LODeX do not need these operators because the structure of source is revealed thanks
to the Schema Summary. The most impactful operator is UNION that involves the 8%
of the queries overall and almost the 33% in the SWDF dataset.

Table 3: Percentage of queries containing unsupported operators.

Dataset Federation Sub-Query Aggregators Negation
DBpedia3.5.1 0.0005 0.0037 0.0005 0.001
Linked Geo Data 0 0.0074 0.0074 0
SWDF 0.0012 0.0152 2.4053 0.0012
British Museum 0 0 0 0
Total 0.0004 0.0054 0.1744 0.0008
Dataset UNION COSNTRUCT DESRIBE ASK
DBpedia3.5.1 44153 0.8991 0.0977 4.3572
Linked Geo Data  9.6475 23115 0.0081 8.3676
SWDF 32.714 0.0493 31.1165 0.0645
British Museum 0 0 0 0
Total 7.6373 1.1684 2.2881 4.9438

In Figure 3 a summary of this analysis is shown. As you can see LODeX could sup-
port user in the definition of the greatest part of the unique SPARQL queries contained
in LSQ. In particular, the global percentage of executable queries is 77.79%. We ob-
tained the worst results with the SWDF endpoints (56.75% of queries executable) and
the main reason is the kind of users that usually queries this dataset. In fact, SWDF is
a dataset containing data regarding conferences and articles about the Semantic Web,
so, the most probable kind of consumers are academics and Semantic Web experts. The
Semantic Web skill of these users is above the average and they are outside the possible
range of users that could use LODeX for building their SPARQL queries.

7 Conclusion

The Basic Query model represent an expressive model that can satisfy real world needs
in supporting users in formulating SPARQL queries. LODeX, that internally uses this
model, represents a powerful tool in supporting users in exploring unknown LOD sources
[7]. In this paper we showed that LODeX could be able to support users in the formu-
lation of the 77.6% of the queries contained in LSQ dataset. Some of the limitations of
LODeX, like the focus in the extensional knowledge, and of the Basic Query model, like
the impossibility of composing cyclic queries, have barely affected this result. However,
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Fig. 3: Summary of the number of unique queries executable or not through LODeX.
Legend: executable: executable through LODeX; cyclic: cyclic query not executable
through LODeX; intensional: queries not executable through LODeX because they tar-
get the intensional knowledge; operators: queries containing unsupported SPARQL op-
erators; mixed: unsupported queries for more than one specific reason of the latter three.

this analysis allows to delineate future lines of improvement. First of all, we could ul-
teriorly meet users needs by including the possibility of building UNION queries. Suc-
cessively, we could focus our effort in extending the Basic Query model for enabling
aggregation queries.
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