Exploiting ODB-Tools as a tool for the design of electrical systems

Sonia Bergamaschi®’

(1) University of Modena, DSI
Via Campi 213/B - 41100 Modena

2 Maurizio Vincini'
(2) University of Bologna - CSITE-CNR

Viale Risorgimento, 2 - 40136 Bologna

e_mail: {sonia,vincini}@dsi.unimo.it

Abstract

This paper presents the use of the OLCD (Object
Languages with Complements allowing Descriptive
cycles) Description Logic in the modelling and
design phases of industrial electrical systems.

We propose the wuse of a DL-based sys-
tem, ODB-Tools (available in internet at
http://sparc20.dsi.unimo.it), to aid the devel-

oper in the design and consistency check activity of
the system.

ODB-Tools is an integrated environment for ob-
ject oriented database (OODB) schema validation
and semantic query optimization, preserving tax-
onomy coherence and performing taxonomic infer-
ences.

The approach of the tool is based on the OLCD
description logic proposed as a common formalism
to express class descriptions, a relevant set of in-
tegrity constraints (IC rules) and queries. Descrip-
tion Logic inference techniques are exploited to eval-
uate the logical implications expressed by IC rules
and thus to produce the minimal taxonomy of the
schema, w.r.t. inheritance. ODB-Tools is a ODMG
93 [1] compliant tool, both for the schema definition
(ODL language) and for the query language (OQL),
and supports an on-line graphical interface devel-
oped in Java language.

The effectiveness of ODB-Tools for electrical system
design is shown by means of a real application mod-
elling example.

1 Motivation

Description Logics languages - DLs ', derived from
the KL-ONE model [2], have been proposed in the

' DLs are also known as Concept Languages or Termino-
logical Logics.

80’s in the Artificial Intelligence research area. DLs
are fragments of the first order logic: they enable
concepts to be expressed, so that they can be viewed
as logical formulas built using unary and binary
predicates, and contain one free variable (to be filled
with instances of the concept).

By exploiting defined concepts semantics, and,
given a type as set semantics to concept descrip-
tions, it is possible to provide reasoning techniques:
computing subsumption relations (i.e. “isa” relation-
ships implied by concept descriptions) and detecting
incoherent (i.e. always empty) concepts. In this pa-
per we describe the OLCD DL [3, 4], extended with
integrity constraints and method definition, to im-
prove the DLs reasoning techniques applied (inco-
herence and subsumption).

These techniques are profitable for database de-
sign activities: if we map a database schema includ-
ing only classes (no views) into one of the DLs sup-
ported by a system, we are able to automatically
detect incoherent classes. Incoherence of a schema
can thus be avoided by preventing the introduction
of incoherent classes. A more active role can be
performed with the introduction of views. Given
a new view, it can be automatically classified (i.e.,
its right place in an already existing taxonomy can
be found) by determining the set of its most specific
subsumer views (subsumers) and the set of its most
generalized specialization views (subsumees). There-
fore, beside a passive consistency check, minimality
of the schema with respect to inheritance can easily
be computed. We have developed a prototype sys-
tem based on OLCD, called ODB-Tools [5, 6] to aid
the developer in the design and consistency check
activity of the system.

The paper shows the effectiveness of ODB-Tools
in the modelling and design phases of a real indus-

AITA Notizie, Anno XII, No. 1, 1999

trial electrical systems. It will be cleared out how
the consistency check techniques could be be easily
used for the system data model design, thanks to
the ODB-Tools ODMG-93 [1] compliant interface.

The paper is organized as follows: Section 2 briefly
introduces the electrical systems design phases,
while Section 3 describes OLCD and the consis-
tency check techniques. In Section 4 ODB-Tools
prototype is illustrated and in Section 5 we report
some remarks about the use of ODB-Tools in real
application modelling domain. For a complete re-
port of the design of the application see [7] and
http:/ /sparc20.dsi.unimo.it/prelet. Finally, in Sec-
tion 6, you can find the conclusions.

2 The Elect-Designer Project

Nowadays, the core of industrial manufacture is rep-
resented by high technology and automation. There-
fore, Elect-Designer Project’s main aim is to aid the
designer in the design of electrical systems.
The modern manufacturing automation systems are
made up by:
e Decision making center, composed of a series
of PLC (Programmable Logic Controller) con-
nected together;

e Peripherals, divided into actuators and sen-
sors. Actuators are the electrical motors that
translate the incoming signal (produced by the
PLCs) into mechanical action. Sensors are able
to translate into electrical signals the physical
and mechanical quantity measured on field;

e Electrical system: the connection wires among
decision making center and peripherals.

Briefly, an industrial automated system design is
organized in the following fundamental phases:
1. System layout definition (mechanical specifica-
tion);
2. Choice of Primary Components (sensors and ac-
tuators) by the designer;

3. Choice of Subcomponents useful for primary
component (automated phase);

4. Choice of Auxiliary Components: control box,
electrical panel, console, button panel, ...;

5. System layout definition (electrical specifica-
tion);

6. Component specification and cash budget;

Prelet

\ Prelet
/ Schema ODB-Toals

Object-World

ODBC
RDBMS

Figure 1: Elet-Designer System

7. PLC software programming.

The goal of the Elect-Designer Project is to cover
the entire electrical project design cycle, from the
system’s mechanical layout to the component’s spec-
ification, via primary component and subcomponent
choice and electrical layout definition (PLC software
programming specification is not considered).

2.1 Elect-Designer System

Fig. 1 shows the system realized in the Elect-
Designer Project. The application, developed by
Microsoft C++, uses ODB-Tools to represent the in-
formation regarding the electrical systems. For the
data storage a relational DBMS is used: the data
transfer procedures between the application and the
RDBMS are executed by a software module (Object
Wrapper) developed during the project.

Each system component is now described in detail:

e Prelet: the application developed within the
Elect-Designer Project. Starting from the me-
chanical layout of the system, the application
leads the designer to make the choice of primary
and auxiliary components and subcomponents,
automatically providing the list of suitable com-
ponents for the requirements. Finally, it (au-
tomatically) produces the component specifica-
tion and cash budget. In the next development
of the project, the system will be integrated
with CAD application to produce a global lay-
out;

AITA Notizie, Anno XII, No. 1, 1999

e Object Wrapper: software module for storing
and retrieving objects in a RDBMS support-
ing a OO interface. Having these capabilities in
a separate component, it helps to isolate data
management system dependencies and hence
contributes to portable applications [8].

e ODB-Tools: thanks to the interaction with
ODB-Tools (described in Section 4), the object
data schema is validated by the coherence and
variance check.

Since the focus of the paper is on the usage of
DLs as a support for engineering applications, next
sections of the article will describe the reasoning
techniques on the data schema and their implica-
tions, leaving out the project’s applications (Prelet
and Object Wrapper software modules).

3 OLCD: A Formalism for
Complex Objects including
Integrity Constraints

OLCD is an extension of the object description lan-
guage ODL, introduced in [3, 9] and is in the tradi-
tion of complex object data models [10]. OLCD, as
its ancestor ODL, provides a system of base types:
string, boolean, integer, real; the type constructors
tuple, set and class allow the construction of com-
plex value types and class types. Class types (also
briefly called classes) denote sets of objects with an
identity and a value, while value types denote sets of
complez, finitely nested values without object iden-
tity. Additionally, an intersection operator can be
used to create intersections of previously introduced
types allowing simple and multiple inheritance. Fi-
nally, types can be given names. Named types come
in two flavours: a named type may be primitive that
means the user has to specify an element’s member-
ship in the interpretation of the name or virtual and
in such a case its interpretation is computed.

The extensions to ODL introduced in OLCD are:
quantified path types, integrity constraint rules and
methods definition. The first extension has been in-
troduced to deal easily and powerfully with nested
structures. Paths, which are essentially sequences
of attributes, represent the central ingredient of O-
O query languages to navigate through the aggrega-
tion hierarchies of classes and types of a schema [11].

In particular, following [11], we provide quanti-
fied paths to navigate through set types. The al-
lowed quantifications are existential and universal
and they can appear more than once in the same
path. A path type is a type associating with a path
to a type of the formalism. Therefore, by means of
path types, we can express a class of integrity con-
straints.

The second extension allows the expression of in-
tegrity constraints represented as a if then rule uni-
versally quantified over the elements of the domain
with an antecedent and a consequent which are types
of the formalism. These rules give the possibility to
represent a relevant piece of knowledge in a declar-
ative style.

The third extension permits the definition of
methods as used in most of the existing object-
oriented data model [12]. Each method is related
to a class and can be inherited along the classes hi-
erarchy. Method names can be reused in different
parts of the hierarchy (overloading).

A generalized database schema definition can be
thus introduced since it perfectly fits the usual
database viewpoint.

3.1 Semantic expansion of a type and
coherence check

The semantic expansion of a type allows to incor-
porate any possible restriction which is not present
in the original type but is logically implied by the
type and by the schema. We propose a method to
compute the semantic expansion of a type [4] which
is based on two ingredients: iteration of the trans-
formation “if a type implies the antecedent of a rule
then the consequent of that rule can be added”; eval-
uation of logical implications by means of subsump-
tion computation [2, 3] among types. Following the
approach of [13] for semantic query optimization and
exploiting at the same time subsumption computa-
tion to evaluate logical implications, we perform the
semantic expansion of the types included at each
nesting level in the type description.

Moreover, we say that a type is incoherent iff for
all domains the (semantic expansion of the) type
extension is always empty. A database schema is
incoherent iff for all domains has at least an inco-
herent type. In [3], the algorithms to compute the
subsumption relationship and coherence check of a

AITA Notizie, Anno XII, No. 1, 1999

ODL Interface [1®18/E8[y =50
Schema Query
Validator §1@/eifiyFi=g

Graphic Interface

ODB-Designer ODB-QOptimizer

Figure 2: ODB-Tools

schema are given.

Finally, we consider the method consistency prob-
lem and, in particular, we want to check whether
a given method can produce an inconsistency (i.e.
when a method is called with arguments for which
this method is undefined). Following the approach
used in Oy data model [12], we define the covariant
specialization for a method. This means that for
a method specification, the sufficient condition to
ensure a safe type is that each type (i.e. signature
field of the method) can be specialized only by terms
whose types are “subtypes” of the fields type (we
adopt the notion of “subtypes” defined in [14]). As
described in [15], the covariant specialization guar-
antees the statically well-type method but is no safe
with respect to run-time type error. To avoid run-
time error it is necessary to use the contraviariant
rule [16] for the method signature parameters, so
that the parameter types of the ancestor are sub-
types of the inherited method types. In the OLCD
extension we have defined both a covariant and con-
travariant safe schema, so that it is possible to re-
quire, alternatevely, both coherence checks, since co-
variance and contravariance are not opposing views,
but distinct concepts with their own place in ob-
ject oriented systems. The independence of the two
mechanisms, shown in [15], should be integrated in
a type-safe checking of the object oriented language.

4 ODB-Tools Architecture

ODB-Tools, whose architecture is shown in Fig. 2,
provide a wuser-friendly integrated environment
based on the ODMG-93 standard, with the following
features:

Schema validation and classification: The user
inserts a DB schema, exploiting ODL language, and
the system performs the coherence validation and
the classification, i.e., for each class, the system de-
termines the right place of the class in the inher-
itance hierarchy between its most specific general-
izations and its most generalized specializations.
Regarding the coherence check w.r.t. methods,
the tool performs the covariance check on return
parameter (for the method defined in the integrity
constraint), while the covariance check on the call
parameter types will be implemented in the future.
The result is shown by a graphic representation of
the schema inheritance and aggregation hierarchies.
Semantic Query Optimization: the user can in-
sert a query, exploiting OQL language, related to the
given schema and the system executes the semantic
query optimization. The result is the semantic ex-
pansion of the query shown by a new OQL descrip-
tion and by a graphic representation of the query’s
classification with respect to the schema.
ODB-Tools is composed of five main modules:

¢ ODL Interface: the schema acquisition mod-
ule that accepts a schema description in ODL
language and translates it into a OLCD schema.
ODL syntax has been extended to provide the
IC Rules descriptive capability.

e OQL Interface: the query input (output) in-
terface module that receives a query in OQL
language and translates it into OLCD syntax
(and vice-versa).

e Schema Validator: the (covariance) schema
validation module which automatically builds
up the class taxonomy and preserves the coher-
ence with respect to the inheritance and aggre-
gation hierarchies.

e Query Optimizer: the module which executes
the semantic expansion of the query.

e Graphic Interface: the module which visual-
izes the schema inheritance and the aggregation
hierarchies.

ODB-Tools is available Internet at
http:/ /sparc20.dsi.unimo.it. The interfaces,
validation and optimization modules are realized
using the C language (gcc 2.7.2 compiler, flex 2.5
and bison 1.24 generator), while the graphic module
is developed by Java language (JDK 1.1 compiler).

on

AITA Notizie, Anno XII, No. 1, 1999

Applet

Electrical_System

eeeee

5 Act3c
rE
|| 7 A1 ‘/ /¥ subga. subsc
/ ; SuhEaA Subsc
act2a | actze TAE Subza Sub7al ‘g ypac
Cirze wirac| cupia SubBal s ypoc
subsa
Order | Flsa FRel I Rules

Tip [1): Click the backgreund to change tip

Figure 3: The Elect-Designer Schema

5 The DB schema of Elect-
Designer: coherence check

This section will illustrate the application data
schema created by exploiting the reasoning tech-
niques for the design.

The DB schema designed for the Elect-Designer
Project is shown in fig. 3, where a light box repre-
sents a class while a grey one is an Integrity Con-
straint (IC), divided in antecedent (if A) and con-
sequent (then B). The use of ODB-Tools during the
design ensures the avoiding of coherence problems
in classes, ICs and methods definition. It is impor-
tant to underline that in the Elect-Designer Project,
caused by the nature of the problem, ICs and meth-
ods constitute more than half of the schema infor-
mation knowledge: almost all the information are
electrical quantities whose relationships are known
a-priori and fixed by the UE document DIN VDE
0660, N. 102,107,200. Thanks to the ICs and meth-
ods declaration we may insert at the conceptual level
(directly into the schema) the consistence rules be-
longing to the electrical normative. The subsequent
covariant-schema, check permits the automatic veri-
fication of classes and methods definition. This fea-
ture turns out to be very useful in the reduction
of the project’s time development and in obtaining
the schema correctness. In such a way designers can
focus their attention on both the semantic aspects
of the schema and the IC rules, without necessarily
stopping for the manual coherence check after each

minimal schema modification.

At the end of the design, some further remarks on

the obtained schema can be carried out :

1. ODB-Tools is able to show directly classes (and
ICs) relationships (even the inherited ones) and
gives the chance to make a deep analysis of the
implications among classes and ICs (for exam-
ple rule ActlA is related to the classes Electri-
cal_System, Contact and Terminal);

2. equivalent classes are promptly detected (and
shown in the same box). In the example the
Sub5C is equivalent to Subcomponent class, so
that the consequent of Sottd IC is redundant
and replaceable by the class itself;

3. an inheritance hierarchy regarding the ICs may
be detected (by subsumption computation), so
that the designer has the opportunity to en-
rich and hence modify the knowledge base. In
the example, Term3 rule is a specialization of
Term?2 rule.

6 Conclusions

Starting from ODB-Tools, a DL-based system used
in the design of engineering application to aid the
developer in the consistency check activity, we have
extended OLCD including methods definition and
check analysis.

The effectiveness of the approach for electrical sys-
tem design is shown by means of a real application
modelling example. Therefore, the usage of this in-
ferential instrument is an element of the schema’s
automatic check which turns out to be a relevant
aid for the critical analysis of the schema itself.

References

[1] R. G. G. Cattel. The Object Database Standard
- ODGMY93. Morgan Kaufmann, 1996.

[2] R. J. Brachman and J. G. Schmolze. An
overview of the KL-ONE knowledge represen-
tation system. Cognitive Science, 9(2):171-216,
1985.

[3] S. Bergamaschi and B. Nebel. Acquisition and
validation of complex object database schemata
supporting multiple inheritance. Journal of Ap-
plied Intelligence, 4:185-203, 1994.

AITA Notizie, Anno XII, No. 1, 1999

[4]

[6]

[9]

[10]

[11]

[12]

Domenico Beneventano and Sonia Bergam-
aschi. Incoherence and subsumption for re-
cursive views and queries in object-oriented
data models. Data and Knowledge Engineer-
ing, 21(3):217-252, February 1997.

Domenico Beneventano, Sonia Bergamaschi,
Claudio Sartori, and Maurizio Vincini. ODB-
QOPTIMIZER: A tool for semantic query
optimization in oodb. In Int. Confer-
ence on Data FEngineering - ICDE97, 1997.
http://sparc20.dsi.unimo.it.

D. Beneventano, S. Bergamaschi, C. Sartori,
and M. Vincini. ODL-tools: a description log-
ics based tool for schema validation and se-
mantic query optimization in object oriented
databases. In Sesto Convegno AIIA - Roma,
1997.

S. Riccio. Elet-designer: uno strumento intelli-
gente orientato agli oggetti per la progettazione
di impianti elettrici industriali. Tesi di Laurea,
DSI, Universita di Modena, 1998.

S. Bergamaschi, A. Garuti, C. Sartori, and
A. Venuta. The object wrapper: an object-
oriented interface for relational databases. In
Furomicro - 97, 1997.

D. Beneventano, S. Bergamaschi, S. Lodi, and
C. Sartori. Consistency checking in complex
object database schemata with integrity con-
straints. IEEFE Transactions on Knowledge and
Data Engineering, 10:576-598, July/August
1998.

S. Abiteboul and P. Kanellakis. Object identity
as a query language primitive. In SIGMOD,
pages 159-173. ACM Press, 1989.

E. Bertino, M. Negri, G. Pelagatti, and L. Sbat-
tella. Object-oriented query languages: The no-
tion and the issues. IEEFE Trans. Knowl. and
Data Engineering, 4(3):223-236, June 1992.

Francois Bancilhon, Claude Delobel, and
Paris Kanellakis (eds.). Implementing an
Object-Oriented database system: The story of
O,. Morgan Kaufmann, 1992.

[13]

[14]

[15]

[16]

M. Siegel, E. Sciore, and S. Salveter. A
method for automatic rule derivation to sup-
port semantic query optimization. ACM Trans.
on Database Systems, 17(4):563-600, December
1992.

Luca Cardelli. A semantics of multiple in-
heritance. Information and Computation,
76(2/3):138-164, February /March 1988.

Giuseppe Castagna. Covariance and contravari-
ance: Conflict without a cause. ACM Transac-
tions on Programming Languages and Systems,
17(3):431-447, May 1995.

Pierre America and Frank van der Linden. A
parallel object-oriented language with inheri-
tance and subtyping. ACM SIGPLAN No-
tices, 25(10):161-168, October 1990. OOPSLA
ECOOP 90 Proceedings, N. Meyrowitz (edi-
tor).

